网络热词 > 藻类

藻类

藻类包括数种不同类以光合作用产生能量的生物。它们一般被认为是简单的植物,并且一些藻类与比较高等的植物有关。虽然其它藻类看似从蓝绿藻得到光合作用的能力,但是在演化上有独立的分支。所有藻类缺乏真的根、茎、叶和其它可在高等植物上发现的组织构造。藻类与细菌和原生动物不同之处,是藻类产生能量的方式为光合自营性。关于藻类的研究叫作藻类学(Phycology或Algology)

类的概念古今不同。中国古书上说:“,水草也,或作藻”。可见在中国古代所说的藻类是对水生植物的总称。在中国现代的植物学中,仍然将一些水生高等植物的名称中贯以“藻”字(如金鱼藻黑藻茨藻、狐尾藻等),也可能来源于此。与此相反,人们往往将一些水中或潮湿的地面和墙壁上个体较小,粘滑的绿色植物统称为青苔,实际上这也不是现在所说的苔类,而主要是藻类。

藻类植物并不是一个纯一的类群,各分类系统对它的分门也不尽一致,一般分为蓝藻门、眼虫藻门、金藻门、甲藻门绿藻门、褐藻门、红藻门等。藻类的分类有其特殊性,由于它们均无根、茎、叶等器官的分化,所以它们的分类一般只能根据它们的形态结构、细胞内所含色素、贮藏养料和生殖方式以及生活史等来进行。

藻类涵盖了原核生物、原生生物界和植物界。原核生物界中的藻类有蓝绿藻和一些生活在无机动物中的原核绿藻。属于原生生物界中的藻类有裸藻门、甲藻门(或称涡鞭毛藻)、隐藻门、金黄藻门(包括硅藻等浮游藻)、红藻门、绿藻门和褐藻门。而生殖构造复杂的轮藻门则属于植物界。属于大型藻者一般仅有红藻门、绿藻门和褐藻门等为大型肉眼可显而易见之固著性藻类。此类大型藻几乎99%以上之种类栖息于海水环境中,故大型藻多以海藻称之。另外,有些肉眼可见的固著性蓝绿藻和少数之硅藻严格而言应该亦属于大型藻的范围。

类植物可以是从原始的光合细菌发展而来的。光合细菌具有细菌绿素,利用无机的硫化氢作为氢的供应者,产生了光系统。原始藻类植物,如蓝藻类所具有的叶绿素a,很可能是由细菌绿素进化而来的。蓝藻类利用广泛存在的水为氢的供应者,具有光系统,通过光合作用产生了氧。随着蓝藻类的产生,光合细菌类逐渐退居次要地位,而放氧型的蓝藻类则逐渐成为占优势的种类,释放出来的氧气逐渐改变了大气性质,使整个生物界朝着能量利用效率更高的喜氧生物方向发展。这个方向的进一步发展就产生了具有真核的红藻类,同时,类囊体单条地组成为叶绿体,但集光色素基本上一样,仍以藻胆蛋白为集光色素。蓝藻和红藻的集光色素,藻胆蛋白,需用大量能量和物质合成,是很不经济的原始类型,所以只能发展到红藻类,形成进化上的一个盲枝。

藻类植物的第二个发展方向是在海洋里产生含叶绿素a和叶绿素c的杂色藻类。叶绿素c代替了藻胆蛋白,进一步解决了更有效地利用光能的问题。在开始的时候,藻胆蛋白仍继续存在,如在隐藻类,但进一步的进化,效率较低的藻胆蛋白没有继续存在的必要而逐渐被淘汰,所以在比隐藻类较为高级的种类,如在甲藻类、硅藻类,除叶绿素a以外,只有叶绿素c,而藻胆蛋白消失了。迄今,海洋仍为含有叶绿素c的种类,包括甲藻类、金藻类、黄藻类和硅藻类等浮游藻类和褐藻类的底栖藻类,占据优势。但这个类群不能离开水体,仍是一个盲枝。 

藻类植物的第三发展方向是在海洋较浅处产生绿色植物。它们除了叶绿素a以外,还产生了叶绿素b。据科学家估计,叶绿素a+b系统比之叶绿素a+藻胆蛋白系统,光合作用效率高出了3倍,也高于叶绿素a+c系统。这是藻类植物进化的主流。很可能十几年前发现的原绿藻就是这类植物的祖先。原绿藻植物出现的时间可能与原核的杂色藻类(尚未发现)差不多,但由于某种原因,可能与当时的大气光照条件有关,杂色藻类大量发展起来而原绿藻却停留在原始状态。后来,环境条件变为较为适合于叶绿素 b生物的生长,从原绿藻植物就产生了真核的绿藻类。它们不但已产生了叶绿体,而且已经有了比较其他藻类更加进步的光合器,即具有基粒的叶绿体。就是这类植物终于登陆,进一步演化为苔藓植物、蕨类植物及种子植物。几亿年前地球大气的含氧量已达到现在大气的百分之十,形成了臭氧屏蔽层,阻挡了杀伤生物的紫外线,使陆地具备了生命生存的条件。登上陆地后,光合生物的进化速度大大加快,在大约5亿年内就从原始的陆地植物发展到高等的种子植物。

藻类(algae , 单数作alga)是单细胞的鞭毛藻(如Oochromonas属),而另一些藻类(如闸极藻属〔Scenedesmus〕)则聚合成群体。绿藻类的松藻属(Codium)由无数分支丝体交织缠绕而成,部位不同的丝体形态和功能亦异。藻类虽然主要为水生,但无处不在,分布范围从温带的森林到极地的苔原。某些变种可生活于土壤中,能耐受长期的缺水条件;另一些生活于雪中,少数种能在温泉中繁盛生长。

大多数藻类都是水生的,有产于海洋的海藻;也有生于陆水中的淡水藻。在水生的藻类中,有躯体表面积扩大(如单细胞、群体、扁平、具角或刺等),体内贮藏比重较小的物质,或生有鞭毛以适应浮游生活的浮游藻类;有体外被有胶质,基部生有固着器或假根,生长在水底基质上的底栖藻类;也有生长在冰川雪地上的冰雪藻类;还有在水温高达80℃以上温泉里生活的温泉藻类。藻体不完全浸没在水中的藻类也很多,其中有些是藻体的一部分或全部直接暴露在大气中的气生藻类;也有些是生长在土壤表面或土表以下的土壤藻类。就藻类与其它生物生长的关系来说,有附着在动、植物体表生活的附生藻类;也有生长在动物或植物体内的内生藻类;还有的和其它生物营共生生活的共生藻类。总之,藻类的生活习性是多种多样的,对环境的适应性也很强,几乎到处都有藻类的存在。

那些含有大量蓝绿藻的水域,视黄酸水平很高,也许正是它们导致越来越多两栖动物畸形。  也许这些名叫蓝藻的微生物不是故意的,但它们的存在确实使水域中富含一些化学物,并导致蛙和其他野生脊椎动物出现畸形。  北京大学的环境毒理学家胡建英说,蓝藻又称蓝绿藻,可以引起水域中出现视黄酸,这是一种称为以前未受人们重视但是广泛传播的化学物。在2012年5月29日发表于《美国科学院院报》的论文中,胡博士和她的同事们说,在她们实验室培养的24种蓝藻中,有13种可以产生一些类型的视黄酸或者类视黄酸物。  视黄酸是一种维生素A的衍生物,它可以对脊椎动物的肢体发育起作用。研究人员们对上个世纪90年代以来出现的畸形蛙进行研究,发现视黄酸类可能是其病因之一。  胡和同事们还分析了来自中国第三大淡水湖太湖的样本,其中就富含蓝藻类生物。结果发现,太湖中含有高浓度的视黄酸。  这项新研究“打开了一个新的潜在研究领域”,美国盖恩斯维尔市领导着佛罗里达海洋基金学院课程的浮游生物生态学家卡尔?海文斯说,“现在,我非常想了解这些化合物是否也在其他有蓝藻的湖泊中被发现,我对进一步研究充满了期待。”  太湖中的视黄酸浓度高达20纳克/升,这是日本筑波大学的KunimitsuKaya和他的同事们在日本湖泊中发现浓度的一万倍。2011年,Kaya报道,蓝藻可以产生一种类视黄酸物(称为7-羟基视黄酸);该大量化合物可能会导致像太湖这样的极端环境。它引起的浮藻和泡沫很可能遮住阳光,使那些本来可以降解的高浓度视黄酸无法降解。  科瓦利斯俄勒冈州立大学的生态学家安德鲁?布劳施坦因说,目前还没有足够的信息将蓝藻与高发的两栖生物畸形联系起来。他和其他研究人员已经提出了一些其他的原因,包括紫外线辐射和吸虫纲寄生物。  博耳德科罗拉多大学的疾病生态学家皮耶特?约翰逊说,寄生物可以导致一些肢体畸形,但是它不能解释所有的病例。胡博士的论文“可以解释在没有寄生物的湿地中产生的畸形生物”。

All rights reserved Powered by 网络热词 87994.com

copyright ©right 2010-2020。
网络热词内容来自网络,如有侵犯请联系客服。zhit325@126.com