网络热词 > 九点圆圆心

九点圆圆心

★三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-pointcircle〕,或欧拉圆,费尔巴哈圆.

九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.

九点圆具有许多有趣的性质,例如:

1.三角形的九点圆的半径是三角形的外接圆半径之半;

2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;

3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.

事先定义的变量与垂心、外心一样:

d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (2c1+c2+c3)/4c,(2c2+c1+c3)/4c,(2c3+c1+c2)/4c )。

All rights reserved Powered by 网络热词 87994.com

copyright ©right 2010-2020。
网络热词内容来自网络,如有侵犯请联系客服。zhit325@126.com