网络热词 > 滤波

滤波

滤波(Wave filtering)是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。滤波分为经典滤波和现代滤波。

定义

滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。是根据观察某一随机过程的结果,对另一与之有关的随机过程进行估计的概率理论与方法。

起源

滤波一词起源于通信理论,它是从含有干扰的接收信号中提取有用信号的一种技术。“接收信号”相当于被观测的随机过程,“有用信号”相当于被估计的随机过程。例如用雷达跟踪飞机,测得的飞机位置的数据中,含有测量误差及其他随机干扰,如何利用这些数据尽可能准确地估计出飞机在每一时刻的位置、速度、加速度等,并预测飞机未来的位置,就是一个滤波与预测问题。这类问题在电子技术、航天科学、控制工程及其他科学技术部门中都是大量存在的。历史上最早考虑的是维纳滤波,后来R.E.卡尔曼和R.S.布西于20世纪60年代提出了卡尔曼滤波。现对一般的非线性滤波问题的研究相当活跃。

滤波是信号处理中的一个重要概念,滤波分经典滤波和现代滤波两种。

对于滤波器,增益幅度不为零的频率范围叫做通频带,简称通带,

增益幅度为零的频率范围叫做阻带。例如对于LP,从-w1到w1之间,叫做LP的通带,其他频率部分叫做阻带。通带所表示的是能够通过滤波器而不会产生衰减的信号频率成分,阻带所表示的是被滤波器衰减掉的信号频率成分。通带内信号所获得的增益,叫做通带增益,阻带中信号所得到的衰减,叫做阻带衰减。在工程实际中,一般使用dB作为滤波器的幅度增益单位。

按照滤波是在一整段时间上进行或只是在某些采样点上进行,可分为连续时间滤波与离散时间滤波。前者的时间参数集T可取为实半轴【0,∞)或实轴(-∞,∞);后者的T可取为非负整数集{0,1,2,…}或整数集{…,-2,-1,0,1,2,…}。设X={X,tT={Y,tT)有穷,即其中X为被估计过程,它不能被直接观测;Y为被观测过程,它包含了X的某些信息。用表示到时刻t为止的观测数据全体,如果能找到中诸元的一个函数?(),使其均方误差达到极小,就称为Xt的最优滤波;如果取极小值的范围限于线性函数, 就称为Xt的线性最优滤波。可以证明,最优滤波与线性最优滤波都以概率1惟一存在。对于前者,悯t就是Xt关于σ()(生成的σ域)的条件期望,记作对于后者,若进一步设均值EXtEYt0,则悯t就是Xt在所张成希尔伯特空间上的投影,记作如果 (X,Y)是二维正态过程,则最优滤波与线性最优滤波是一致的。

为了应用和叙述的方便,有时还把上面的定义更细致地加以分类。设τ 为一确定的实数或整数,且考虑被估计过程。按照τ=0、τ>0、τ<0,分别称为最优滤波、(τ步)预测或外推、(τ步)平滑或内插,分别为对应的误差与均方误差,而统称这类问题为滤波问题。滤波问题的主要课题是研究对哪些类型的随机过程XY,可以并且如何用观测结果的某种解析表示式,或微分方程,或递推公式等形式,表达出并进而研究它们的种种性质。此外,上面所指的一维随机过程XY,都可以推广为多维随机过程。

All rights reserved Powered by 网络热词 87994.com

copyright ©right 2010-2020。
网络热词内容来自网络,如有侵犯请联系客服。zhit325@126.com