网络热词 > 类星体

类星体

类星体是类似恒星天体的简称,又称为似星体、魁霎或类星射电源,与脉冲星、微波背景辐射和星际有机分子一道并称为20世纪60年代天文学"四大发现"。长期以来,它总是让天文学家感到困惑不解。

类星体是迄今为止人类所观测到的最遥远的天体,距离地球至少100亿光年。类星体是一种在极其遥远距离外观测到的高光度和强射电的天体。类星体比星系小很多,但是释放的能量却是星系的千倍以上,类星体的超常亮度使其光能在100亿光年以外的距离处被观测到。据推测,在100亿年前,类星体数量更多。

类星体是类似恒星天体的简称,又称为似星体、魁霎或类星射电源,与脉冲星、微波背景辐射和星际有机分子一道并称为20世纪60年代天文学“四大发现”。长期以来,它总是让天文学家感到困惑不解。

类星体是20世纪60年代最重要的天文发现,引起了一阵观测类星体的热潮。60年代末期,在一次大规模集中搜寻中,就发现了150个类星体。到70年代末,已观测到的类星体就超过了1000个,其中约1/3为类恒星射电源。据估计,人们能够观测到的类星体至少数以万计。迄今,人们虽仍未弄清楚类星体真正的身份,对其热衷程度却未减,哈勃望远镜等重要的当代天文设备,都以观测类星体为其重要任务之一。

20世纪六十年代,天文学家在茫茫星海中发现了一种奇特的天体,从照片看来如恒星但肯定不是恒星,光谱似行星状星云但又不是星云,发出的射电(即无线电波)如星系又不是星系,因此称它为“类星体”。类星体的发现,与宇宙微波背景辐射、脉冲星、星际分子并列为20世纪60年代天文学四大发现。

1960年天文学家们发现了射电源3C 48的光学对应体是一个视星等为16等的恒星状天体,周围有很暗的星云状物质。令人不解的是光谱中有几条完全陌生的谱线。1962年,又发现了在射电源3C 273的位置上有一颗13等的“恒星”。使天文学家同样困惑的是其光谱中的谱线也不寻常。

1963年,终于有人认出了3C 273谱线的真面目,原来它们是氢原子的谱线,只不过经历了很大的红移,使得谱线不易证认。循着红移这条线索,再去分析3C 48的光谱,得出它的红移量还要更大。设想红移产生于多普勒效应,那么3C 273和3C 48都有很大的退行速度,分别达光速的1/6和1/3。对于这种在光学照片上的形态像恒星,但是其本质又迥然不同的天体,天文学家把它们命名为类星射电源。进一步的观测和研究揭示了又一类天体,它们的形态也很像恒星,而且也有很大的红移,但是没有射电辐射,被称为射电宁静类星体

类星体的显著特点是具有很大的红移,表示它正以飞快的速度在向我们远离。类星体离我们很远,大约在100亿光年以外,可能是目前所发现最遥远的天体,天文学家能看到类星体,是因为它们以光、无线电波或x射线的形式发射出巨大的能量。

类星体是宇宙中最明亮的天体,它比正常星系亮1000倍。对能量如此大的物体,类星体却不可思议地小。与直径大约为10万光年的星系相比,类星体的直径大约为1 光天(light-day)。一般天文学家相信有可能是物质被牵引到星系中心的超大质量黑洞中,因而释放大量能量(喷发激烈射线)所致。这些遥远的类星体被认为是在早期星系尚未演化至较稳定的阶段时,当物质被导入主星系中心的黑洞增添“燃料”而被“点亮”。

由于类星体是一个难解的天体,它奇特的现象如红移之谜,它的能量来自哪里?它在挑战人类的既有物理观念,它的解决,可能使我们对自然规律的认识向前跨一大步。

从1960年起,人们对剑桥第三电波星表中(3C)一些不知意义、模糊的无线电波源,陆陆续续有下列的发现:

它们的光学体很小(光学直径<1"),和恒星很难区别:

从帕罗马天文台5m望远镜所拍照片中显示,它和恒星一样,都只是一个光点。它们有极亮(非比寻常的亮)的表面:

可见光及无线电波波段都此特性。

它们的光谱是连续光谱及强烈的发射谱线:

在1962/63年,由 M.Schmidt 测出这和那些已知的电波星系光谱相同。

事实上,测得的类星体的光谱主要有三部分:

由同步辐射造成的非热性连续光谱;

吸积作用造成极明亮的发射谱线;

星际介质造成的吸收谱线。

它们的光谱呈现巨大的红位移量(位移指数Z=△λ/λ)。

因此由哈勃定律推论,它们是极远的蓝色星系,可见光绝对亮度超过一般正常星系的100倍,而电波强度和CygA星系相当。

到此阶段的探查,我们将之冠上类星体Quasar之名(或谓类星电波源 Quasistellar Radio Source)。

目前所知最远的类星体,约150亿光年。2001年,美国宇航局(NASA)的科学家们发现了由18个类星体组成的类星体星系,这是发现的规模最大的类星体星系,距离我们65亿光年。[2]

2003年,以色列特拉维夫大学和美国哈佛大学的科学家在1月23日出版的《自然》(Nature)杂志上宣布发现了类星体周围存在暗物质晕的证据。[2]

2006年,欧洲科学家称发现神秘罕见的“孤儿”类星体。

2007年,科学家首次发现十分罕见的类星体三胞胎。

2008年,科学家发现罕见的可以制造X射线的类星体。

2011年科学家用哈勃望远镜揭开了一个神秘天体的面纱。2007年,一位德国生物老师在夜空中发现神秘绿色天体,距地球约6.5亿光年,被称为汉妮天体。原来这是个已经死亡的类星体。

汉妮天体(Hanny’s Voorwerp,Voorwerp是荷兰语中“物体”的意思),可以说是宇宙中最神秘的天体之一。但如今,1月10日美国天文学会第217次会议上公开的哈勃太空望远镜拍摄到的精细照片和X光观测数据,终于揭开了汉妮天体的神秘面纱。

由许多地面和太空望远镜拍摄到的原始图像表明,汉妮天体是一团巨大的炙热气体。天文学家推测,汉妮天体所发出的光,来自于一个名为IC2497的相邻星系的辐射。

科学家认为,IC2497的内核里有一个巨大的黑洞,曾经吞噬掉了各种气体和星体,并释放出两股相反的炙热气体和高能辐射。这种活跃的星系也被称为类星体。当类星体发出的辐射击中气体云时,就会激发氧原子,使气体云发出绿色的光芒。

美国耶鲁大学的天文学家Kevin Schawinski在进行了X光观测之后发现,这个类星体已经不再活跃了,这可能是因为它中央的黑洞已经没有“食物”可吃了。但科学家们相信,这个类星体是最近才死亡的,因为汉妮天体还仍然在发光。

鉴于IC2497的光需要几万年才能抵达汉妮天体,因此天文学家推测类星体应该是在不到20万年前熄灭的。这也意味着,它熄灭的速度要比科学家想象的快得多。

2010年4月由哈勃望远镜观测到的最新图像也证实了死亡类星体的假说。值得一提的是,那次观测发现了汉妮天体里有一些年轻的恒星群,它们中的有些年龄不会超过100万岁。

在类星体的星系模型中,能量可能来自于恒星间的碰撞。星系核心里恒星密度极高,经常发生碰撞,从而释放能量。而且恒星在碰撞中会粘合在一起成为越来越大的恒星,大质量恒星迅速演化为超新星,然后爆发,释放高能电子。这一模式的缺点在于,如果要恒星发生如此密集的碰撞,则类星体内部恒星数密度,应当高达人们附近空间里恒星数密度的1万亿倍。还有理论认为,类星体是质量约为太阳1亿倍的大质量恒星,它的光度可能达到人们观测到的类星体的光度。但这种大质量恒星释放出的辐射应当具有热辐射的性质,而不是像类星体那样放出非热辐射;此外,这样大质量的恒星也很不稳定。其它有代表性的理论包括:

根据同步电子辐射原理推论出,类星体中黑洞质量--108M⊙,所有辐射能(光度)--1039

W1013L引力透镜与类星体⊙。根据相对论E=mc2推算其寿命约108年。推算出如此巨大能量之

结果,使得一些天文学家质疑:决定距离的基础是否为哈勃红移关系?

一般认为红移所代表的可能性有三种:

哈勃红移

越远的星系红移效应越大;类星体是目前所发现的最远的星系,它可能代表宇宙的边缘或最早的宇宙。

引力红移

就是从远离强引力场的地方观测,谱线会向长波的方向移动;但需要的

引力场极大(约一亿个太阳质量的黑洞),且造成的谱型与类星体的不符。

局部红移

认为可能是某些星系高速喷出物质所造成之局部现象(与上述视线之超光速原理相同);支持的证据是,很多星系及类星体常成双或成群出现,而它们之间的红移值截然不同。反对的说法是,也有不少成群协同的类星体、星团和它们的母星系有相同的红移量。

其中以支持哈勃红移理论的证据最为有力。

寻找红移与星系相近的低红移类星体:

以z0.5为范围,果然找到很多与椭圆或漩涡星系有关而红移相近的类星体;而高红移星系实在太暗,难以测出,不适用此法。

双胞胎类星体的证据:

1979年 D.Walsh,R.F.Carswell 和 R.J.Weymann 吃惊的发现类星体不但距离极近(5.7"),星等同样是17等,z值同为1.41, 甚至完全相同的光谱。令人怀疑他们根本是同一天体,只是被重力透镜影响光线偏折而呈二重像。后来果然在类星体B旁发现一模糊的云雾,测量结果发现它是造成此光学二重像效应z=0.39 的中介星系(介于地球与此类星体之间)。此发现意义极重大,不但印证了爱因斯坦广义相对论中重力透镜的预测,而且证明红移大(z=1.41)之类星体在红移小(z=0.39)星系之后,更支持了哈勃红移的理论。

重力透镜造成的光变:

当中介星系转动时,由于重力的作用,使其后方类星体的光度发生变化;理论上可从观测到的类星体光变时间及影像空间角度,去推算类星体距离,再去印证哈勃红移所推算之距离是否正确。可惜,在类星体与地球之间常有无数物质,造成引力的多重影响,而不易以此法测出,有待将来进一步的改良观测技术。

吸收线的支持:

类星体中吸收谱线所测得的Zabs与发射谱线的z值不同,一般是ZabsZ;如果发射线z值是代表类星体的位置(距离),则其吸收线之Zabs则是类星体和地球之间许多的星际间物质吸收所造成(如图一中Lα森林区,就是Lα线被不同距离物质吸收,所呈多重红移之结果)。当(Z-Zabs)/Z0.01,代表是类星体和地球之间许多星系外部的洞区所造成。

此外,在高红移类星体吸收线中找到低红移星系(及类星体)之吸收线系统,而在低红移星系吸收线中找不到高红移类星体之吸收线,这可说明高红移星体的确是在低红移星系(类星体)的后面。

另外,一种很像类星体的怪东西,在1929年被发现并定名为BL蝎虎座天体;它的特征就是几乎没有特征。光度变化不规则,只有连续光谱,测不到它的谱线(可能太弱了)。因此,它的距离也很难定出。它那属于非热性之连续光谱在可见光部份比类星体陡。已发现100个左右。

到底类星体是个什么样的天体呢 ?它的外型像恒星,光谱像塞佛特星系,电波性质像电波星系……?当前认定是,它是宇宙在大霹雳后,最先形成的“星系”前身。但无疑的,它是一种非常活跃的天体;如果宇宙红移理论确实是对的,那类星体对于宇宙将扮演极重大的角色;它代表的是最远,最古老的宇宙。因此能从侧面映整个宇宙的演化。也由于它高度的亮及神秘的吸收线,更是研究宇宙中介物质(介于地球和宇宙边缘之间)的最佳利器。

类星体在类星体发现后的二十余年时间里,人们众说纷纭,陆续提出了各种模型,试图解释类星体的能源疑难。比较有代表性的有以下几种:

All rights reserved Powered by 网络热词 87994.com

copyright ©right 2010-2020。
网络热词内容来自网络,如有侵犯请联系客服。zhit325@126.com