网络热词 > 应用数学

应用数学

应用数学(Applied Mathematics)是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴(尤其是科学)的数学分枝,可以说是纯数学的相反。包括微分方程、向量分析、矩阵、傅里叶变换、复变分析、数值方法概率论数理统计、运筹学、控制理论组合数学信息论等许多数学分支,也包括从各种应用领域中提出的数学问题的研究。计算数学有时也可视为应用数学的一部分。

应用数学包含两个词:”应用”和”数学”。大体而言,应用数学就包括两个部分,一部分就是与应用有关的数学,这是传统数学的一支,我们可称之为”可应用的数学”。另外一部分是数学的应用,就是以数学为工具,探讨解决科学、工程学和社会学方面的问题,这是超越传统数学的范围。应用数学在21世纪,主要是应用于两个领域,一个是计算机,随着计算机的飞速发展,需要一大批懂数学的软件工程师做相应的数据库的开发,另一个是经济学,现在的经济学有很多都需要用非常专业的数学进行分析,应用数学有很多相关课程本身设计就是以经济学实例为基础的。

数学是人类活动中的一个项目,即使全是由人脑产生的最纯粹的数学,也与自然界的规律相关联,迟早会对自然规律的掌握或其他方面有用处的。我们将现在已可应用,或者即将就可应用的数学称之为可应用的数学。 以目前的发展而言,大概像微分方程、概率统计、计算数学、计算机数学,和运筹学等都算在可应用的数学范围内。另一类则”数学的应用”。物理学家、航空工程师、地质学家、生物学家、经济学家等,他们为了解决各学科及工程上的问题,需要用数学用为工具。因此,他们有时要把已经发展得很完善的数学搬过来用,有时候却不得不自己创造性地发展新的数学方法,来处理他们所遇到的独特问题。这就是数学的应用。他们往往要求不太高的严谨,常需要配合观察实验结果及经验所赋予的直觉来发展数学方法。所以除了相当水平的数学修养外,应用数学家们对应用主题的学科还必须有相当深度了解。

传统的数学分为”纯数学”与”可应用的数学”,二者的差别只是程度上的不同,即使最纯粹的数学在将来也会有应用的可能。它们的共同点是都只关注问题的数学内容,也只用数学标准来衡量研究的成果。“数学的应用”则以科学或工程内容为主导,数学只是工具,所以研究成就的衡量标准也大大不同。

20世纪以前没有”应用数学”这一名词。大数学家如高斯、欧拉、柯西等都是既搞纯数学,又搞应用数学。比如,函数的发展基本上是为了解决物理学所引发的拉普拉斯方程。纯粹的逻辑思维与自然现象的解释探讨是并行发展的。一直到二次大战前,高等数学的应用绝大部分与物理学有关。

在二次大战前后,由于航空工业的发展以及飞机在战争中的重要性,高等数学开始大量用在力学及其它工程方面,促成了应用力学与应用数学的发展。在40、50年代,应用数学的主要研讨内容是力学,大多数应用数学家的背景也不是数学,所以”应用”的性质是很强的。60年代以后情况就有些改变。一方面高等数学的应用范围愈来愈广,不但物理学、工程、化学、天文、地理、生物、医学在用高等数学,甚至经济学、语言学也开始用相当多的高等数学,应用数学因此得到发展。

应用数学得以发展的另外一个原因是数学的发展越来越极端抽象化,渐渐地只有数学家自己以及狭门同行才能理解他们在搞什么。在这种情形下,需要用数学的理论科学家与工程师们就只好自力更生,不依赖纯数学家,而自己搞起数学来了。他们所搞的数学与纯数学最大的区别就是与实际的结合:自然的实际,社会的实际。自然现象与社会发展提出的数学问题要设法解决;数学问题解决以后,其探讨结果要再回到自然界与社会中去,应用数学就这样产生了。

中国最著名的数学典籍《九章算术》就是246个实际应用问题的汇集,注重实际问题,是中国古代数学的优良传统。体力与脑力劳动分工之后,科学发展的新阶段:创造了纯粹而严密的科学体系,却远离了现实生活。

从此以后,数学就从两个方向发展着。一方面是纯粹数学。例如哥德巴赫猜想、费马大定理等世界名题,成为世人关注的焦点,一旦有所突破,可被视为人类思想史上的大事。至于非欧几何、拓扑学、抽象群论等等,虽说开始时看不到和实际的直接关系,但是只要是好的数学知识,往往在若干年后会发现有实际应用。陈省身20世纪40年代研究的纤维丛理论,到了20世纪70年代,竟成为物理学上由杨振宁等发现的规范场的数学工具,这种世界的统一性,令人不可思议。

另一方面,应用数学在不断地迅猛发展。现实世界毕竟是数学发展的源泉。从17世纪以来,社会发展和生产需要一直是数学发展的主要推动力。牛顿从物理学需要发明了微积分,反过来,第谷布拉赫(TychoBrahe)用数学方法发现了海王星;蒸汽机推动了运动学和热力学的发展,促使数学分析学走向新的高峰;电磁学的基本规律是用微分方程写的。时至20世纪,喷气机和航天器的制造和导航,CT扫描的医疗设备,组织大规模战争的运筹方案,本质上都是数学技术。

在现代,数学不仅作为一个解决问题的工具,而且已成为时代文化的一个重要组成部分,一些数学概念、语言已渗透到日常生活中去,一些数学原理已成为人们必备知识,如面积、体积、对称、百分数、平均数、比例、角度等成为社会生活中常见名词;象人口增长率、生产统计图、股票趋势图等不断出现在报刊、电视等大众信息传播媒介中;而象储蓄债券、保险、面积、体积计算(估算)、购物决策等成为人们难以回避的现实问题。那么未来的公民现在的学生,必须具备一个解决实际应用问题的数学素养,这一切都呼唤应用问题呈现于数学教育教学过程中。

中国古代数学一向有实用的传统,数学教学中重视数学应用也并非新问题。在小学里,数学应用问题是教学的重点和难点,从未有人持异议。到了初中,学了平面几何,数学品味趋于抽象,逻辑推理不断加强,数学应用渐有淡出之势。不过,数学应用并未绝迹,诸如浓度问题、行程问题等仍有出现,平行四边形与铁栅门的关系等也总要提及。只是被某种错误观念的误导,大家不太重视罢了。

一到高中,情况变得越发严重。数学一直是中学的主干课程,为什么要学那么多的数学?一般认为,数学是“能力筛子”、“思想的体操”,无非是“升学需要”、“思想健身”而已。至于有什么用,对不起,不必问。由于大跃进年代,文革时期“过火地”联系实际,破坏了数学知识的系统性,一旦拨乱反正,便专注于纯粹数学的要求。一个时期以来,主张数学应用被称为“实用主义”、“短视行为”,似乎数学离现实生活越远越好。“掐头去尾烧中段”式的纯数学推理成为唯一的选择。因此,关于数学应用问题的设计与教学成为迫在眉睫的任务。

简单举两个例子

1运用生活经验解决数学问题

在上“用字母表示数”一课的内容时,老师用CAI课件演示李蕾同学拾金不昧的情景,紧接着播出一则“失物招领启事”:失物招领,李蕾同学在校园升旗台附近拾到人民币A元,请失主前来少先队大队部认领。校少先队大队部2002.3学生惊奇于数学课上老师怎么讲起了失物招领的事呢?老师和学生通过分析、讨论A元所表示的意义,

师:A元可以是1元钱吗?生1:A元可以是1元钱,表示拾到1元钱。

师:A元可以是5元钱吗?生2:可以!表示拾到5元钱。

师:A元还可以是多少钱呢?生3:还可以是85元,表示拾到85元钱。

师:A元还可以是多少钱呢?生4:还可以是0.5元,表示拾到5角钱。……

师:那么A元可以是0元吗?生5:绝对不可以,如果是0元,那么这个失物招领启事就和大家开了一个大玩笑!

师:为什么不直接说出拾到多少元,而用A元表示呢?……

由于学生容易认识具体、确定的对象,而用字母表示的数是不确定的、可变的,因此开始学习学生往往难以理解。本题中的“失物招领启事”是学生所熟悉的活动,激发了学生学习新知的欲望,学生便能不由自主地参与到解题过程中去。在讨论交流中,集思广益,使学生在愉快的氛围理解了新知,并对所学的知识更理解,掌握地更牢固;另一方面也提高了人际交往能力,增强了相互帮助、合作的意识,受到良好的思想教育,也锻炼了学生对社会的洞察力。

2、运用数学知识解决实际问题

例如学习了长方形正方形面积的计算及组合图形的计算后,尝试着让学生运用所学知识解决生活中的实际问题。如:老师家有一间两室一厅的住房,如图:你能帮帮他算一算这两室一厅住的面积有多大?要计算面积有多大我们先要测量哪些长度的面积?在给出一定的数据后让学生们计算;学生们回家测算一下自己家的实际居住面积。在这样一个实际测算的过程中,既提高了兴趣,又培养了实际测量、计算的能力,让学生在生活中学、在生活中用。

如,学过了100以内加减法之后,创设了“买汽车”的教学情境:微型汽车大削价,小林花去100元买了几辆汽车,他买了几辆汽车,是哪几辆?

通过观察、思考、讨论,同学们用式子有序地依次表示为:

(1)把100元分解为两个数的和

50+50=100;40+60=100;30+70=100;20+80=100。

(2)把100元分解为3个数的和

60+20+20=100;50+20+30=100;40+40+20=100;30+30+40=100。

(3)把100元分解为4个数的和

40+20+20+20=100;30+30+20+20=100。

(4)把100元分解为5个数的和

20+20+20+20+20=100。    

All rights reserved Powered by 网络热词 87994.com

copyright ©right 2010-2020。
网络热词内容来自网络,如有侵犯请联系客服。zhit325@126.com