网络热词 > 量子涨落

量子涨落

不确定性原理允许在全空无一物的空间(纯粹空间)中随机地产生少许能量,前提是该能量在短时间内重归消失。产生的能量越大,则该能量存在的时间越短,反之亦然。当我们测量能量E和时间t时,测得的能量E越准确,那它存在的时间t就越不确定;反之,t知道的越精确,那涨落涉及的能量就越不确定。它们之间的关系遵守一定的原则:△E×△t > h/2π(h是普朗克常数)。涨落涉及的能量与它存在的时间之间的乘积总要满足大于 h/2π 这个值。

不确定性原理允许在全空无一物的空间(纯粹空间)中随机地产生少许能量,前提是该能量在短时间内重归消失。产生的能量越大,则该能量存在的时间越短,反之亦然。当我们测量能量E和时间t时,测得的能量E越准确,那它存在的时间t就越不确定;反之,t知道的越精确,那涨落涉及的能量就越不确定。它们之间的关系遵守一定的原则:△E×△t > h/2π(h是普朗克常数)。涨落涉及的能量与它存在的时间之间的乘积总要满足大于(h/2π)这个值。

量子涨落看似违反了能量守恒定律,但这种涨落发生在空间中的任何地方,而且能量存在的时间非常短,时刻一到,它就要消失,所以在大尺度上,能量守恒定律并没有被破坏。

不过,上世纪60年代末,有人想到一种可能性:物质或能量的万有引力本身具有负的能量(因为引力是吸力,假设无限远的势能是0,那么当物体靠近后因为引力做功使得其势能为负值)。当涨落产生的能量产生的瞬间,它又产生了一个引力场,引力的负能量与物质(或能量本身)对应的正能量互相抵消,使整个系统看起来并没有多出能量,所以量子涨落没有违反能量守恒定律。

All rights reserved Powered by 网络热词 87994.com

copyright ©right 2010-2020。
网络热词内容来自网络,如有侵犯请联系客服。zhit325@126.com